
Lecture 3-6
Getting Started with C

Muhammad Ali Nayeem

http://teacher.buet.ac.bd/ali_nayeem/CSE109_Feb2015/

Bits and Bytes

• Bit

–Bit - stores just a 0 or 1

–Can store/communicate 2 states

– Transistors on a chip can make a bit

– Too small to be much use on its own .. form into a byte

• Byte

–Byte - the most important unit of storage

–One byte is made of 8 bits

–We can access each byte of RAM

2

Byte

• How much can one byte hold?

–1 bit -- 0/1 -- 2 patterns

–2 bits -- 00/01/10/11 -- 4 patterns

–3 bits -- 000/001/010/011/100/101/110/111 -- 8 patterns

–3 bit pattern has twice as many patterns vs. the 2 bit pattern

– So n bits has twice as many patterns as (n-1) bits

–What is the general formula for # patterns for n-bits?

–2n (2 to the nth power)

3

Kilobyte, Megabyte, …

• Kilobyte

–Kilobyte KB – 1024 (210) bytes

–About a thousand bytes

• Megabyte

–Megabyte (MB) - 1024 kilobytes

–About a million bytes

• Gigabyte (GB), Terabyte (TB), …

4

Number system

Most numbering system use positional notation :

N = anrn + an-1rn-1 + … + a1r1 + a0r0

Where:

N: an integer with n+1 digits

r: base

ai {0, 1, 2, … , r-1}

Example:

a) N = 278

r = 10 (base 10) => decimal numbers

symbol: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (10 different symbols)

N = 278 => n = 2; a2 = 2; a1 = 7; a0 = 8

278 = (2 x 102) + (7 x 101) + (8 x 100)

Decimal, Binary, Hexadecimal

• Base: 10,2,16

• Decimal <--> Binary

• Binary <--> Hexadecimal

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Example:

1. Convert the following binary
numbers into hexadecimal
numbers:

(a) 00101111
2

Refer to the binary-hexadecimal
conversion table above

0010 1111
2
= 2F

16

2 F

A Mental Picture of Memory/RAM

• You can access each byte of
RAM from the program

• Every byte has

– Location/address: where is
the byte in the RAM?

–Content/value: what the byte
contains?

Addr
ess

Value

0 0101 1111

1 1101 1111

2 0101 0000

3 0000 1100

4 1101 0101

5 1010 0101

… …

Learning a Language

Alphabet/Character Set for C

Constant Vs. Variable

• Variable

– a named memory location

–Can hold different values at different times

–Can hold only one value at a time

• Constant

– Just a value

–Doesn’t change

–Doesn’t have any memory location

3X

X = 3

5X

X = 5

C Constants

Let’s
focus on
Integer
first

Rules for Constructing Integer Constants in C

• An integer constant must have at least one digit.

• It must not have a decimal point.

• It can be either positive or negative.

• If no sign precedes an integer constant it is
assumed to be positive.

• No commas or blanks are allowed within an integer
constant.

• Has a fixed size

–Usually 32 bits (4 bytes)

Keywords

• C has some words that has a special meaning for
the compiler

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Types of C Variables

• depends on the type of constant
(integer/real/character…) it can hold

• A particular type of variable can hold only the same
type of constant.

• For example, an integer variable can hold only an
integer constant

int refers to integer type in C

Rules for Constructing Variables Names

• Case sensitive
–Count, count & COUNT are different

• Can be of any length, but only first 31 characters are
important

• Can contain letters, digits and the ‘_’

• But first character must be a letter or ‘_’

• Variable name cannot be same as a keyword

• For example –

correct: abcd, abcd2, abcd_3, Abcd

incorrect: ab cd, 2abcd, abcd…3, ab!cd

Variable Name

• Should be clear and meaningful

• If two or more words are needed then

–either separate them using a ‘_’

–or keep them together, but start each word except the
first one with a capital

• For Example

student_no average_age

dateOfBirth averageAge

Arithmetic Operators

• Acts on variables and constants

+

-

* (Multiplication)

/ (Division)

% (Modulus)
Applicable only for integers

Statements / C instruction

• Combination of variables, constant, keywords,
operators etc.

• Specifies an action to be performed by the program

• A C program is a series of statements

• The statements in a program must appear in the
same order in which we wish them to be executed

• Every C statement must end with a semicolon(;)

• Spaces may be inserted between two words to
improve the readability of the statement

–However, no blank spaces are allowed within a variable,
constant or keyword.

Variable declaration

• Each variable must be declared before use

• This declaration is done at the beginning of the program

• A variable is declared using a statement of the form:

type name;

•type: type of the variable

•name: name of the variable

– Example: int first_num;
– In C int is the type for integer variable

• Multiple variables of the same type can be declared
together separated by comma (,)
– Example:

int first_num, second_num, sum;

Adding 2 integers

main()

{

int first_num, second_num, sum;

first_num = 5;

second_num = 10;

sum = first_num + second_num ;

}

?????????????

?????????????

?????????????

first_num

second_num

sum

A Portion of RAM

5

10

15

Can you see
the

constants &
variables??

More on Variable Declaration

• While declaring the type of variable we can also
initialize it, see below

int first_num=5, second_num=10, sum;

• Without initializing or before assigning values, a
variable contains unknown value

–Known as Garbage value

Arithmetic Expressions

Any Combination of arithmetic operators
and operands like

•2 * var1 + 6

•28

•(var1 - var2) * 2

•var2

Arithmetic Expressions

Assignment statement

• Assigns the result of an Arithmetic Expression to a
variable

sum = first_num + second_num ;

= assignment operator
Expression at the right

Variable at the left

At first the expression at the right is evaluated

Then the result is stored at the memory location
represented by the variable at the left

C allows only one variable on left-hand side of =.

Remember Assignment statement is not an equation

C Constants

Now
focus on
Real

Real Constants

• Often called Floating Point constants
• Size 32 bits
• Written in two forms

– Fractional form
• +325.34
• 426.0
• -32.76
• -48.5792

– Exponential form
• usually used if the value is too small or too large
• +3.2e-5
• 4.1e8
• -0.2e+3
• -3.2e-5
• part appearing before ‘e’ is called mantissa
• the part following ‘e’ is called exponent

Rules for Fractional form

• A real constant must have at least one digit

• It must have a decimal point

• It could be either positive or negative

• Default sign is positive

• No commas or blanks are allowed within a real
constant

Rules for Exponential form

• The mantissa part and the exponential part should
be separated by a letter e or E

• The mantissa part may have a positive or negative
sign

• Default sign of mantissa part is positive

• The exponent must have at least one digit, which
must be a positive or negative integer. Default sign
is positive

• Range of real constants expressed in exponential
form is -3.4e38 to 3.4e38

Real Variable

• Store real constants in memory

• C keyword for real type float

float radius = 5.66;

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Arithmetic Operators for Real values

+

-

*

/

What is missing here?

Displaying output

#include<stdio.h> /*Header file*/

main() /* The main function */

{

int first_num, second_num, sum; /*Variable Declaration*/

first_num = 5;

second_num = 10;

sum = first_num + second_num ;

printf(“%d”, sum); /*Can you remember this?*/

}

printf() – Readymade library function

• printf ("<format string>", <list of variables>) ;

• <format string>

– Fixed portion

–Variable portion
• Format specifier (start with %)

• %f for real values

• %d for integer values

int a=4,b=5,c=8;

float x= 3.5;

printf("%f %d %d %d",x,3+2,c,a+b*c–d);

Running a program for different values

• Make the relevant change in the program

• Again compile and execute it

• What are the problems?

• Need to make the program general

Receive input from user

• Again readymade library function

• scanf()

• Counterpart of printf()

Receive inputs from user

#include<stdio.h>

main()

{

int first_num, second_num, sum;

printf(“Enter two numbers:”);

scanf(“%d%d”,&first_num,&second_num); /*Wait for input*/

sum = first_num + second_num ;

printf(“The sum is:%d”, sum);

}

Cautions while using scanf()

• Don’t miss the & before variable name

• Don’t put any characters between “” other than
format specifiers

Arithmetic expressions

Integer and Float Conversions

• An arithmetic operation between an integer and
integer always yields an integer result

• An operation between a real and real always yields
a real result

• An operation between an integer and real always
yields a real result.

– In this case the integer is first converted to a real

– then the operation is performed.

–Hence the result is real.

Integer and Float Conversions

Type Conversion in Assignments

• What value is stored in the variable?

• during evaluation of the expression

– the ints would be converted to floats

– the result of the expression would be a float

• But when this float value is assigned to s

– it is again demoted to an int and then stored in s

Type Conversion in Assignments

• Let’s assume that k is an integer variable and a is a
real variable

Type cast

• Cause Temporary type change
(type) value

• When needed?

int x;

float y;

x = 3;

y = (float) x; /* Explicit casting

*/

y = x; /* Implicit casting */

How to represent text in computer?

• How to store A, B, C, …, $,@,… in RAM?

C Constants

Now
focus on
Character

Character Constants

• Size 8 bits

• Like small integer (0-255)

• Rules for constructing character constant

– a single alphabet, a single digit or a single special symbol
enclosed within single inverted commas.

– The maximum length of a character constant can be 1
character.

• Example

– 'A'

– 'I'

– '5'

– '='

How character is stored in memory

• Needs represent character by integer

• Needs a standard

–American Standard Code for Information Interchange
(ASCII)

ASCII

ASCII

Character Variable

• Type char

• Format specifier %c

• ASCII values of the characters are stored in the
variables.

char a, b, d ;

a = 'F' ;

b = 'G' ;

d = '+' ;

Arithmetic Operators for Real values

+

-

*

/

% ??

Precedence of Operator

• When in a expression 2 or more operator
– how exactly does it get executed?
– Unfortunately, no simple rules such as “BODMAS”

• 2 * x - 3 * y
– (2x)-(3y) ?
– 2(x-3y)?

• Precedence/Priority: Which operator is applied when?
• *, / and % are higher in precedence that + and -
• Precedence can be altered by using parentheses

– Innermost parentheses evaluated first

• For example-
– 6+4/2 is 8
– because ‘/’ has precedence over ‘+’
– if we want the ‘+’ to work first, we should write-

(6+4)/2

Associativity of Operators

• When an expression contains two operators of
equal priority

– the tie between them is settled using the associativity of
the operators

• Two types—Left to Right or Right to Left

• Left to Right associativity means that the left
operand must be unambiguous/ clear

–must not be involved in evaluation of any other sub-
expression

Associativity of Operators

• Consider a = 3 / 2 * 5 ;
– Tie between between / and *

– settled using the associativity of / and *

–Both /,* have L to R associativity

–only / has unambiguous left operand

–Result??

Associativity of Operators

• Consider z = a * b + c / d ;

• left operands for both operators are unambiguous

• Compiler is free to perform * or / operation as per
its convenience

• no matter which is performed earlier the result
would be same

By the grace of Allah we’ve finished

• Chapter 1

• Let Us C

