
Muhammad Ali Nayeem

Student of Knowledge

http://teacher.buet.ac.bd/ali_nayeem/

 We have already learned 2 types of statements
 Declaration statement

 Assignment statements

 Insha'Allah we will learn a new type of statement today
 Control Statement

 Control Statements determine your program’s flow of execution
 Order of execution of statements in a program

 Default order ?

 Often we need to alter/change order
 When?

if
General form

A new keyword

expression:
 any valid C expression

 know as target

 If expression is non-zero statement will be executed

 If expression is zero statement will be bypassed/skipped

Normally expression consists of relational & logical
operator

if(expression)

statement;

 Allow us to compare two values

#include<stdio.h>

main()

{

int num;

scanf("%d", &num);

if(num>=0)

printf("num is positive");/*if(num>-1)*/

if(num<0)

printf("num is negative");

}

 Placing ; (semicolon) immediately after condition in if

 if(expression); statement;

 Confusing equality operator (==) with assignment operator (=)

 if(a=b)

The assignment operators return the value of the
variable specified by the left operand after the
assignment

 The resultant type is the type of the left operand

 if(a=5)

 if does nothing when the expression evaluates to false

 Can we execute one statement if the expression evaluates to true and
another statement if the expression evaluates to false?

 Of course! This is what is the purpose of the else statement

 If expression is true statement1 will be evaluated and statement1 will be skipped

 If expression is false statement1 will be bypassed and statement2 will be executed

 Under no circumstances both the statements will execute
 Mutually exclusive

 else part is optional

if(expression)

statement1;

else

statement2;

#include<stdio.h>

main()

{

int num;

scanf("%d", &num);

if(num>=0)

printf("num is positive");//if(num>-1)

else

printf("num is negative");

}

 Statements enclosed within { }

 Group two or more statements into one unit

 Can be used anywhere a single statement can

 Common programming error:
 Forgetting braces of compound statements/blocks

 if(expression)

{

statement1;

statement2;

statementN;

}

else

{

statement1;

statement2;

statementN;

}

 If expression is true all the statements with if will be executed

 If expression is false all the statements with else will be executed

…
…

 Connect together true/false results

 ‘&&’ logical AND binary

 ‘||’ logical OR binary

 ‘!’ logical NOT unary

 It is perfectly all right if we write an entire if-else construct within
 either the body of the if statement

 or the body of an else statement.

 This is called ‘nesting’of ifs

#include<stdio.h>

main()

{

int id;

printf("Please enter last 3 digits of your id:\n");

scanf("%d", &id);

if(id>130 && id<196)

{

if(id<163)

printf("You are in C1\n");

else

printf("You are in C2\n");

}

else

{

printf("You are in A or B\n");

}

}

 if(expression)

statement;

else if (expression)

statement;

else if (expression)

statement;

else

statement;

 Multi-way decision

 expressions are evaluated in order

 If any expression is true
 the statement associated with it is executed

 Multiple statements can be associated using { }

 the whole chain is terminated

 If none of the expressions are true
 else part is executed

 Handles none of the above/default case

 Optional

 Input: The marks obtained by a student in 5 different subjects
 Use scanf() to get 5 numbers from the keyboard.

 Find 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 of the 5 marks

 Output: The grade of the student as per the following rules:
 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ≥ 60 → A

 50 ≤ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 < 60 → B

 40 ≤ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 < 50 → C

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 < 40 → Fail

 Use only if statement

 Operators on the same line
have the same precedence

 Rows are in order of
decreasing precedence

 Unary & +, -, and * have
higher precedence than the
binary forms

 Johra Muhammad Moosa
 Lecturer

 Department of Computer Science & Engineering

 Bangladesh University of Engineering & Technology

